国家开放大学年秋季学期电大《高数B》形成性考核1
高等数学(B B )(1 1 )作业答案
高等数学(B B )(1 1 )作业 1 1
初等数学知识 一、名词解释:
邻域——设 和 a 是两个实数,且 0 ,满足不等式 a x 的实数 x 的全体,称为点 a 的 邻域。
绝对值——数轴上表示数 a 的点到原点之间的距离称为数 a 的绝对值。记为a 。
区间——数轴上的一段实数。分为开区间、闭区间、半开半闭区间、无穷区间。
数轴——规定了原点、正方向和长度单位的直线。
实数——有理数和无理数统称为实数。
二、填空题 1.绝对值的性质有 0 a 、 b a ab 、 ) 0 ( bbaba、 a a a 、b a b a 、 b a b a 。
2.开区间的表示有 ) , ( b a 、 。
3.闭区间的表示有 ] [ b a, 、 。
4.无穷大的记号为 。
5. ) ( , 表示全体实数,或记为 x 。
6. ) ( b , 表示小于 b 的实数,或记为 b x 。
7. ) ( , a 表示大于 a 的实数,或记为 x a 。
8.去心邻域是指 ) ( ) ( a a a a , , 的全体。用数轴表示即为 9.MANZU
9.满足不等式 112 x的数 x 用区间可表示为 ]211 ( , 。
三、回答题 1.答:(1)发展符号意识,实现从具体数学的运算到抽象符号运算的转变。(2)培养严密的思维能力,实现从具体描述到严格证明的转变。
(3)培养抽象思维能力,实现从具体数学到概念化数学的转变。
(4)树立发展变化意识,实现从常量数学到变量数学的转变。
2.答:包括整数与分数。
3.答:不对,可能有无理数。
4.答:等价于 ] 5 1 ( , 。
5.答:
)2321( , 。
四、计算题 1.解:
1 20 20 10 20 10 ) 2 )( 1 ( x xxxxxx x 或 或 。
) , 2 ( ) 1 , ( 解集为 。
2.解: 0 50 10 50 10 ) 5 )( 1 ( 0 5 62xxxxx x x x 或
1 5 x x 或
) 5 [ ] 1 , , 解集为( 。
3.解:
5 2 0 ) 5 )( 2 ( 0 10 32 12 x x x x x x , 为方程的解。
函
数( P3 )
一、名词解释 函数——设 x 与 y 是两个变量,若当 x 在可以取值的范围 D 内任意取一个数值时,变量 y 通过某一法则 f,总有唯一确定的值与之对应,则称变量 y 是变量x 的函数。其中 D 叫做函数的定义域,f 称为对应法则,集合 G={y|y=f(x),x D }叫做函数的值域。
奇函数——若函数 ) (x f y 的定义域关于原点对称,若对于任意的 x ,恒有 ,则称函数 ) ( ) ( x f x f ) (x f y 为奇函数。
偶函数——若函数 ) (x f y 的定义域关于原点对称,若对于任意的 x ,恒有 ) ( ) ( x f x f ,则称函数 ) (x f y 为偶函数。
定义域——自变量的取值范围,记作 D x 。
值域——所有函数值组成的集合,记作 G={y|y=f(x),x D }。
初等数学——包括几何与代数,基本上是常量的数学。
三角函数:称 x y x y x y x y x y x y csc sec cot tan cos sin , , , , , 为三角函数。
指数函数——称函数 ) 1 0 ( a a a yx, 为指数函数。
复合函数——设 , , ) ( ) ( x u u f y 若 ) (x u 的值域包含在 ) (u f y 的定义域中,则 y 通过 u 构成 x 的函数,记作 )) ( ( x f y ,称其为复合函数, u 称为中间变量。
对数函数——称函数 ) 1 0 ( log a a x ya,且 为对数函数。
反函数——若函数 ) (x f y 的值域为 G ,若 G y ,都有一个确定的且满足 ) (x f y 的 x 值与之对应。则由此得到一个定义在 G 上的以 y 为自变量、 x 为因变量的新函数,称它为 ) (x f y 的反函数,记作 ) (1y f x 。
幂函数——称函数x y ( 为实数)为幂函数。
常函数——称函数 ) ( 为常数 c c y 为常函数。
常量——在某一变化过程中,始终保持不变的量。
变量——在某一变化过程中,可以取不同数值的量。
二、填空题 1.函数概念最早是由莱布尼兹引进的。有了函数概念,人们就可以从数量上描述运动。
2.在历史上第一个给出函数一般定义的是狄里克雷,并给出了一个不能画出图形的函数。这就是著名的狄里克雷函数,其表达式是是有理数 ,是无理数 ,xxx f10) ( 。
3.函数的三种表示法:解析法、图像法、列表法。
4.函数表达了因变量与自变量之间的一种对应规则。
5.单值函数是当自变量在定义域中取定了一数值时,与之对应的函数值是唯一的函数。
6.奇函数的图像特点是关于原点对称,偶函数的图像特点是关于 y 轴对称。
7.单调函数的图像特点是总是上升或总是下降。
8.反函数的图像特点是关于直线 y=x 对称。
三、回答题 1.答:设函数 ) (x f y 在集合 D 上有定义,如果存在一个正数 M ,对所有的 D x ,恒有 M x f ) ( ,则称函数 ) (x f y 为有界函数。
2.答:(1)当一个函数 ) (x f y 在区间 内 , ) ( b a 有界时,正数 M 的取法不是唯一的。
(2)有界性是依赖于区间的。
3.答:
) ( ) ( ) (2 1 2 1 2 1x f x f x x b a x x ,则 ,且 , , ,则称函数 ) (x f y 在区间 内 , ) ( b a 单调增加。否则,称为单调减少。
4.答:若函数 ) (x f y 在区间 内 , ) ( b a 单调,其值域是 ) ( d c, ,则函数) (x f y 存在反函数 , ) (1x f y 其定义域是 ) ( d c, ,值域是 ) ( b a, 。
四、作图题 (1)2x y
解:是抛物线。
(2)3x y
解:是立方抛物线。
(3)
x y sin
解:是正弦曲线。
(4)
x y cos
解:是余弦曲线。
(5)
x y tan
解:是正切曲线。
(6)21x y
解:是半抛物线。
(7)
x y ln
解:是自然对数函数。
(8)xy 2
解:是指数函数(a>1)。
(9)
x y2log
解:是对数函数(a>1)。
(10)
x y21log 解:是对数函数(a<1)。
(11)xe y
解:是指数函数(a<1)。
(12) xe y
解:是指数函数(a>1)。
第(1)题图
第(2)题图
第(3)题图
第(4)题图
第(5)题图
第(6)题图
第(7)题图
第(8)题图
第(9)题图
第(10)题图
第(11)题图
第(12)题图 五、计算题 (1)解: 4)2(22 2l lr s 。
(2)解:设长为 x ,宽为 y ,则 10201060 2 2yxyy x, 面积2200 10 20 cm s 。
(3)解:
1 0 1 x x ,所以定义域为 ) 1 ( , 。
(4)解:
5 log ) 2 (2 f , 45log )21(2 f ,
) 1 2 ( log ) (2 22 b ab a b a f
) 1 ( log ) (422 x x f 。
(5)解:由2 xxy 解得yyx12,交换 x 和 y ,得到2 xxy 的反函数xxy12,由 1 0 1 x x ,故定义域为 ) 1 ( ) 1 ( , , 。
(6)解:复合函数为 3 1 2 1 ) 1 1 (2 x x x y
六、讨论题 答:(1)复合函数是函数之间的一种运算; (2)并不是任何两个函数都能构成一个复合函数; (3)复合函数可以是由多个(大于两个)函数复合而成; (4)
) ( ) ( x u u f y , 中,后者的值域正好是前者的定义域; (5)构成复合函数的各简单函数,除了最后一个外,都是基本初等函数。
极
限(P9)
一、名词解释 极
限——一个数列或函数其变化趋势的终极状态。
无穷小量——极限为零的变量或者常数 0。
连
续——设函数 ) (x f y 在0x x 及其一个邻域内有定义,且等式) ( ) ( lim00x f x fx x成立,则称函数 ) (x f y 在0x x 连续。
数列极限——对数列 } {nx 来说,若 n 时, a x n ,则称数列 } {nx 的极
限为 , a
记作 a x nn lim 。
函数极限——设函数 ) (x f y 在0x x 的附近有定义,当0x x 时,A x f ) ( ,则称函数 ) (x f y 在0x x 时的极限为 A ,记作 A x fx x) ( lim0 无穷大量——若 ) ( lim x f ,则称 ) (x f 为该极限过程下的无穷大量。
二、填空题 1.从极限产生的历史背景来看,极限概念产生于解决微积分的基本问题:求面积,体积,弧长,瞬时速度以及曲线在一点的切线问题。
2.极限概念描述的是变量在某一变化过程中的终极状态。
3.在中国古代,极限概念已经产生,我国春秋战国时期的《庄子·天下篇》中说:“一尺之棰,日取其半,万世不竭”,就是极限的朴素思想。
4.公元 3 世纪,中国数学家刘徽的割圆术,就用圆内接正多边形周长去逼近圆周长这一极限思想来近似地计算圆周率 的。
5.极限概念产生于求面积求切线两个实际问题。
三、回答题 1.简述连续性概念。
答 :
设 函 数 ) (x f y 在0x x 及 其 一 个 邻 域 内 有 定 义 , 且 等 式) ( ) ( lim00x f x fx x成立,则称函数 ) (x f y 在0x x 连续。
) (x f y 在(a,b)内连续是指函数 ) (x f y 在(a,b)内的每个点处均连续。
2.间断点分成几类? 答:限中至少有一个不存在 第二类间断点:左右极的左右极限均存在 第一类间断点:在该点间断点
3.什么是单侧连续? 答:设函数 ) (x f y 在0x x 及其右邻域内有定义,且等式 ) ( ) ( lim000x f x fx x成立,则称函数 ) (x f y 在0x x 右连续。同理可定义左连续。
4.什么是连续函数? 答:若函数 ) (x f y 在(a,b)内的每个点处均连续,且在左端点处右连续,右端点处左连续,则称函数 ) (x f y 在[a,b]上连续。
5.简述复合函数的连续性定理。
答:设函数 ) (z f y 在点0z z 处连续,函数 ) (x z 在点0x x 处连续,而) (0 0x z ,并设 )] ( [ x f y 在点0x x 的某一邻域内有定义,则复合函数)] ( [ x f y 在点0x x 处连续。
四、论述题
极限思想的辩证意义是什么? 答:极限概念描述的是变量在某一变化过程中的终极状态,是一个无限逼近的过程,是一个客观上存在但又永远达不到的数。在解决实际问题时,“无限”的过程标志着可以得到精确的答案,他是为解决实际问题的需要而产生的,反过来又成为解决实际问题的有力工具。
五、计算题 (1)解:341324lim1 32 4lim2222 nnnnn n (2)解:414122 sin1lim2 sin2lim0 0 xxxxx x (3)解:
011lim ) 1 ( lim n nn nn n (4)解:eex xxxxx1] )11 [( lim )11 ( lim1 1 六、讨论 解:
) ( lim0x fx1 ) 1 ( lim0 xx
) ( lim0x fx0 0 lim0 x
) ( lim0x fx) ( lim0x fx,
函数在 x=0 处极限不存在。
高等数学(B)(1)作业 2
导
数
一、名词解释 导数——设函数 ) (x f y 在0x x 及其邻域内有定义, 若xx f x x fxyx x ) ( ) (lim lim0 00 0存在,则称此极限值为函数 ) (x f y 在0x x 点处的导数值。记为,0 00 )(x x dxdyx xy x f , , 等。
平均变化率——称xx f x x fxy ) ( ) (0 0为平均变化率。
瞬时变化率——称xx f x x fxyx x ) ( ) (lim lim0 00 0为瞬时变化率。
导函数——对于区间(a,b)内的每一点 x 都有导数值,这样由这些导数值构成的函数称为 ) (x f y 的导函数。
高阶导数——二阶及二阶以上的导数。
驻点——使得 0 ) ( xf 的点。
极值——设函数 ) (x f y 在0x x 及其邻域内有定义,且在0x x 的邻域内) ( ) (0x f x f 恒成立,则称0x x 为极大值点,称 ) (0x f 为极大值。同理可定义极小值。极大值与极小值统称为函数的极值。
二、填空题 1.导数的物理意义是瞬时速度。
2.导数的几何意义是曲线在一点处切线的些率。
3.导数的第三种解释是变化率。
4.导数是一种特殊的极限,因而它遵循极限运算的法则。
5.可导的函数是连续的,但是连续函数不一定可导。
三、回答题 1.什么是费马定理? 答:设函数 ) (x f y 在0x x 的某邻域 ) (0x u 内有定义,并且在0x 处可导,如果对任意的 ) (0x u x ,有 ) ( ) (0x f x f (或 ) ( ) (0x f x f ),那么 0 ) (0 xf 。
2.什么是罗尔定理? 答:设函数 ) (x f y 在闭区间[a,b]上连续,在开区间(a,b)内可导,并且满足 ) ( ) ( b f a f ,那么至少存在一点 ) ( b a, ,使得 0 ) ( f 。
3.什么是拉格朗日定理?它的辅助函数是怎样构成的? 答:设函数 ) (x f y 在闭区间[a,b]上连续,在开区间(a,b)内可导,那么
至少存在一点 ) ( b a, ,使得 ) )( ( ) ( ) ( a b f a f b f 。
辅助函数为:
) () ( ) () ( ) ( a xa ba f b fx f x 。
4.函数的性质有哪些? 答:函数的性质有:有界性,奇偶性,周期性,单调性。
5.导数的绝对值大小告诉我们什么?它反映在函数曲线上情况又怎样? 答:导数绝对值大小反映曲线的陡峭程度,导数的绝对值越大,则曲线越陡峭,否则,曲线越平缓。
6.什么是极大值(或极小值)? 答:设函数 ) (x f y 在0x x 及其邻域内有定义,且在0x x 的邻域内) ( ) (0x f x f 恒成立,则称0x x 为极大值点,称 ) (0x f 为极大值。
设 函 数 ) (x f y 在0x x 及 其 邻 域 内 有 定 义 , 且 在0x x 的 邻 域 内) ( ) (0x f x f 恒成立,则称0x x 为极小值点,称 ) (0x f 为极小值。
7.请举例说明费马定理只给出了极值的必要条件而不是充分条件。
答:例如:直线 y=c(c 为常数),在任意一点都满足费马定理的条件,且导数值都是 0,但是在任意一点处都不是极值点。
8.最大值与极大值是一回事吗? 答:不是一回事。连续函数在某个闭区间上可能有多个极大值和极小值,但是最大值和最小值却各有一个。
9.求最大值或最小值通常要经过哪几个步骤? 答:(1)找出驻点和那些连续但不可导的点来,并计算出这些点的函数值;(2)计算出比区间端点处的函数值; (3)将以上个函数值进行比较,可得到最大值与最小值。
(4)如果是应用问题,则需先分析题意,设变量,列出函数关系,在求出唯一驻点,它就是答案。
四、计算题 1.解:
6 ) 6 ( lim3 ) 3 (lim) 3 ( ) 3 (lim lim02 20 0 0 xxxxf x fxyx x x x 2.解:x xx y21 4423 。
3.解:
x x x x y cos sin 22
4.解:n xyln1
5.解:3 3 2 2 3 3sin ) cos(cos 3 3 ) sin )( cos(cos x x x x x x y
6.解:
x xxy tan ) sin (cos1
7.解:当 0 x 时,xx y1) (ln
当 0 x 时,x xx y1 1] ) [ln(
综上所述,xx1) (ln
8.解:3132)32ln( )32( x e yx x 9.解:212xxy
2 222 22) 1 (2 2) 1 (2 2 ) 1 ( 2xxxx x xy
10. 解:
)21 sin( cos x x y
)22 sin( sin x x y
)23 sin( cos x x y
„ „
)2sin() (x n yn 五、应用题 1.解:3 33434t V t R R V , ,
2 24 334t t V , 当 10 R 时, 10 t , 400 V ,
答:体积 V 增加的速率为 400 cm/s. 2. 解:设一边长为 x,则另一边长为 1-x,
矩形面积 S=x(1-x)=2x x ,
x S 2 1 ,
令 0 S ,解得21 x 。
答:从中间截断,可得到最大矩形的面积。
2.解:设宽为 x 米,则长为x512米,围墙长度为xx L5122 。
222512 2 5122xxxL ,令 0 L , 即 0 512 22 x ,解得 16 x
x 舍掉 16 x , 512/x 答:当宽为 16 米,长为 32 米时,才能使材料最省。
微
分(P17)
一、名词解释 微分——设函数 x x f y x x f x x f y 在点 为函数 处可导,则称 在点 ) ( ) ( ) ( 处的微分,记作 x x f dy dy ) ( ,即
函数的一阶微分形式的不变性——无论 u 是自变量也好,还是中间变量也好, du u f dy )( 总是成立的。
微分的线性化—— 由 ) ( lim00x fxyx 知 , ) ( ) (0高阶的无穷小 是比 x x x f y , 其 中x x f ) (0为线性主部,也就是微分。
二、填空题 1.微分有双重意义,一是表示微小的量,二是表示一种与求导密切相关的运算。
2.微分学包括两个系统:概念系统与算法系统。
3.导数是逐点定义的,它研究的是函数在一点附近的性质。
4.微分中值定理建立了函数的局部性质和整体性质的联系,建立了微积分理论联系实际的桥梁。
三、回答题 1.微分学基本问题是什么? 答:求非均匀变化量的变化率问题。
2.微分学的基本运算是什么? 答:求导运算和求微分的运算。
3.微分的线性化有什么应用? 答:可进行近似计算等。
四、计算题 1.(1)解:
dxxdyx xxy3 3 41 144 0 ,
(2)解:
dxxdyx xyx x xx x44 ln 144 ln 144 ln 4 42 ,
(3)解:
xdx dy x x x y 2 sin 2 sin cos sin 2 ,
(4)解:
x x x y cos sin , dx x x x dy ) cos (sin
2.解:
) 8 04 . 38 (343 3 V cm 3.解:设 03 . 0 1 ) (03 x x x x f , ,取
则 x x f x f x x f ) ( ) ( ) (0 0 0, 01 . 1 01 . 0 1 03 . 01 311 ) 1 ( ) 1 ( 03 . 1323 3 xx x f f
五、证明题 证明:令 x x x e x fx , ,取 0 ) (0, 则 x xxe e x f f x f x f x f ex x 10) 0 ( ) 0 ( ) 0 ( ) ( ) (0, x e x 1 ,证毕。
高等数学(B B )(1 1 )作业 3 3
不定积分
一、名词解释 原函数——如果函数 ) ( ) ( x F x f 与 定义在同一区间 ) ( b a, ,并且处处有:dx x f x dF x f x F ) ( ) ( ) ( ) ( 或 ,则称 ) (x F 是 ) (x f 的一个原函数。
不定积分——若 ) (x F 是 ) (x f 的一个原函数,则称 C x F ) ( 为 ) (x f 的不定积分。记作 C x F dx x f ) ( ) ( . 不定积分几何意义——表示形状完全一样只是位置不同的一族曲线。
二、填空题 1.在数学中必须考虑的运算有两类:正运算与逆运算。
2.对应于加法运算的逆运算是减法,对应于乘法运算的逆运算是除法,对应于正整数次乘方运算的逆运算是开方,对应于微分运算的逆运算是积分。
3.关于逆运算我们至少有两条经验:一是逆运算一般说比正运算困难,二是逆运算常常引出新结果。如减法引出负数,除法引出有理数,正数开方引出无理数,负数开方引出虚数。
三、回答题 1.什么叫函数 f(x)在区间(a,b)的原函数?有多少个?它们彼此之间有什么关系? 答:若 ) ( ) ( x f x F ,则称 ) (x F 是 ) (x f 的一个原函数,有无穷多个,彼此之间相差一个常数。
2.什么叫函数 f(x)在区间(a,b)的不定积分? 答:函数 f(x)的原函数的全体,称为函数 f(x)的不定积分。
3.两个函数的不定积分相等是什么意思? 答:这两个函数相等。
4.说明数学运算中存在的正运算与逆运算。
答:减法是加法的逆运算;除法是乘法的逆运算;开方是乘方的逆运算;不定积分是微分的逆运算;等等。
5.说明原函数和不定积分的关系。
答:原函数的全体就是不定积分。
四、计算题 1.求下列函数的原函数 (1)解:因为 C x dx 5 5 ,
所以该函数的原函数为 C x x f 5 ) (
(2)解: C x x f C x xdx2 2) ( 2 该函数的原函数为 ,
(3)解: C e x d e dx ex x x 2 2 22 ) 2 (214 4 ,
C e x fx 22 ) ( 该函数的原函数为
(4)解: C x x dx x dx x341313132913116 6 6
C x x f 3429) ( 该函数的原函数为
(5)解: C x C x dx x6 1 5 5616 6 , C x x f 6) ( 该函数的原函数为
(6)解: C x x f C x dx 2 ) ( 2 2 该函数的原函数为 ,
(7)解: C x x f C x dxx) (21该函数的原函数为 ,
(8)解: C x x f C x xdx cos ) ( cos sin 该函数的原函数为 ,
(9)解: C x x f C x dx x5 5 651) (51该函数的原函数为 ,
(10)解: C f C d4 4 341) (41 该函数的原函数为 ,
2.求下列各不定积分
(1)解:
C x dx x5 451
(2)解:
C x C x dx x dx x x2512323521231 (3)解:
C x dxxxx4 ln4ln ) 41(
(4)解:
C x x dx x xdx tan ) 1 (sec tan2 2 (5)解:
C e dx ex x
(6)解:
C x x dxdxx1 ln ) 1 (1111 (7)解: C x x xd dx x x2sin21sin sin cos sin
(8)解 ) 1 (1121ar ct an11ar ct an ar ct an22 2x dxx x dxxx x x xdx
= C x x x ) 1 ln(21arctan2
定 定 积 分(P26 )
一、名词解释 定积分——设函数 上连续, , 在区间 ] [ ) ( b a x f y 在区间 ] [ b a, 内插入 1 n个分点:
b x x x x x an n 1 2 1 0 ,把区间 ] [ b a, 分成 n 个小区间] [1 i ix x, ,其长度为i i ix x x 1,其中 i 0,1,2,3,„, 1 - n ,在每个小区间 ] [1 i ix x, 上任取一点i :1 i i ix x ,并作乘积i ix f ) ( ,再求出部分和 10) (nii i nx f S ,令 } { max1 0in ix ,若 S S n 0lim( S 为常数),则称 S 为函数上 , 在区间 ] [ ) ( b a x f y 的定积分,记作 banii ix f dx x f100) ( lim ) ( 定积分几何意义——若函数 0 ) ( x f y ,则定积分 badx x f ) ( 表示由曲线) (x f y 、直线 x b x a x 以及 、 轴所围的曲边梯形的面积。
定 积 分 中 值 定 理 — — 设 函 数 上连续, , 在区间 ] [ ) ( b a x f y
则 在 上 至 少 存 在 一 点 , ] [ b a ,使得 bab a a b f dx x f ] [ ) )( ( ) ( , ,其中 。
微积分基本定理——设函数 上连续, , 在区间 ] [ ) ( b a x f y 则 badx x f ) (
= ) ( ) ( ) ( a F b Fabx F ,这里 ) ( ) ( x f x F
牛顿—莱布尼兹公式——即微积分基本定理中的公式。
二、填空题 1.定积分是对连续变化过程总效果的度量,求曲边形区域的面积是定积分概念的最直接的起源。
2.积分学的基本问题是非均匀变化量的求积问题。它的数学模型是100) ( limnii ix f ,它的物理原形是求变速运动的路程,它的几何原形是求曲边梯形的面积。
3.微分学的基本问题是求非均匀变化量的变化率问题,它的数学模型是xyx 0lim ,它的物理原形是求瞬时速度,它的几何原形是求切线斜率,它的基本运算是求导运算和求微分的运算。
4.微分学研究的是函数的局部性态,无论是微分概念,还是微商概念,都是逐点给出的。数学家研究函数的局部性质,其目的在于以局部定整体。
5.积分学包括不定积分和定积分两大部分,不定积分的目的是提供积分方
法。
三、回答题 1.定积分有哪些应用? 答:物理学应用,几何学应用等。例如,路程问题,曲边梯形面积问题等。
2.定积分的性质有哪些? 答:由以下 9 条:
(1) bababadx x g dx x f dx x g x f ) ( ) ( )] ( ) ( [ ;
(2)
babadx x f k dx x kf ) ( ) ( ; (3)
baabdx x f dx x f ) ( ) ( ; (4)
aadx x f 0 ) ( ; (5)
bacabcdx x f dx x f dx x f ) ( ) ( ) ( ; (6)
baa b dx ; (7)若在 babadx x g dx x f x g x f b a ) ( ) ( ) ( ) ( ] [ ,则 上, , ; (8)设 上的最大值和最小值 , 在 分别是函数 , ] [ ) ( b a x f y m M ,
则: baa b M dx x f a b m ) ( ) ( ) ( ; (9)设函数 上连续, , 在区间 ] [ ) ( b a x f y
则在 上至少存在一点 , ] [ b a ,使得 bab a a b f dx x f ] [ ) )( ( ) ( , ,其中 。
3.简述积分区间上限为变量时定积分定理。
答:设函数 上有定义且连续, , 在闭区间 ] [ ) ( b a t f y 则 xab a dt t f ] [ ) ( , 在 上可导,且 xax f dt t f ) ( ] ) ( [ 。
4.建立定积分步骤有哪些? 答:分为 4 步:
(1)分割;(2)作积i ix f ) ( ;(3)作和 10) (nii ix f ;(4)取极限100) ( limnii ix f ,
其中 } { max1 0in ix 。
四、计算题 1.利用定积分性质,比较下列积分值大小。
(1)解:3 2] 1 0 [ x x x 时, , 当 ,
10103 2dx x dx x
(2)解:2 3] 2 1 [ x x x 时, , 当 ,
21212 3dx x dx x
(3)解:
x x x2ln ln ] 2 1 [ 时, , 当 ,
21212ln ln xdx xdx
2.求函数 上 , 在区间 ] 4 1 [ 3 3 22 x x y 的平均值。
解:平均值 A= 412 3 224914) 32332(31) 3 3 2 (1 41x x x dx x x . 3.设4sin0 x dxdytdt yx,求
解:
x dt tdxdyxsin ) sin (0 , 224sin4 xxx dxdy。
4.设2111xdxAy,求dxdy。
解:dxdy=AxdxAx 12)11(21。
5.计算下列定积分 (1)
解:
2013414313 x dx x
(2)
解:
41232323314) 1 4 (321432x dx x
(3)
解:
2 )] 1 ( 1 [2cos sin2 x xdx
(4)
解:
01011 011) (10) (ee e e x d e dx ex x x
(5)
解:
213dxxx 2133 3dxxx21)331 ( dxx
1 2 ln 3 ) 2 ln 1 (ln 3 1123 ln 312 x x
(6)
解:
4141414123 21613 2161)3 213 21(619 41dttdttdtt tdtt 11 ln1215 ln61511ln1215 ln121143 2 ln121143 2 ln121 t t
6.解:如下图, 体积 V= 40402 23204214 4 ) ( a x a axdx dx x f
第 6 题图
第 7 题图
第 8 题图
第 9 题图
7.解:如上图, 体积3202)12121( )41 ( )21 (20203 222 x x x dxxx dxxV
8.解:如上图, 9311 3 222112yxyxx yx y或
,
面积 313 2 233213)313 ( ] ) 3 2 [( x x x dx x x S
9.解:如上图,面积 422 424e e e dx e Sx x
高等数学(B B )(1 1 )作业 4 4
微积分简史
注意:以下六题自己从书中相应位置的内容去概括,要抓住重点,言简意赅,写满所留的空地。
1.论述微分学的早期史。
答:见书 P216——217 2.简述费马对微分学的贡献。
答:见书 P217——218 3.简述巴罗对微分学的贡献。
答:见书 P218——220 4.论述积分学的早期史。
答:见书 P206——210 5.论述微积分对人类历史的贡献。
答:见书 “一、前言”一开始的部分(前两段)。
6.牛顿和莱布尼兹对微积分的发现做出了什么贡献? 答:见书 P222——225。
微分方程(P33) 一、回答题 1.微分方程的定义。
答:含有未知函数的导数或微分的方程。
2.何为微分方程的通解、特解、初始条件? 答:满足微分方程的所有函数,叫做微分方程的通解;满足微分方程的一个解或者部分解,称为微分方程的特解。微分方程最初所满足的条件,叫做初始条件。
3.何为变量可分离的微分方程? 答:把形如 ) ( ) ( y g x fdxdy 的微分方程,称为微分方程。
4.微分方程与建模有和关系。
答:抛弃具体意义,只关心微分方程的形状,研究如何解方程,等这些工作做熟练了,反过来又可以用它解决实际问题。
5.建模思想和步骤是什么? 答:建模思想就是将各种各样的实际问题化为数学问题,通过建立数学模型,最终使实际问题得到解决。
步骤:(1)明确实际问题,并熟悉问题的背景; (2)形成数学模型; (3)求解数学问题; (4)研究算法,并尽量使用计算机; (5)回到实际中去,解释结果。
二、计算题 1.求下列微分方程的解。
(1)解: C x x dx x y 3 ) 3 2 (2,代入初始条件得 1 C ,
满足初始条件的特解为 1 32 x x y
(2)解: C x C x dx x dx x y23121213812114 4 4
代入初始条件得38 C ,
满足初始条件的特解为383823 x y
(3)解: C e x d e dx e yx x x 3 3 32 ) 3 (366 ,代入初始条件得 2 C ,
满足初始条件的特解为 2 23 xe y
2.解:由题意: 211322xyxx y, Cxx dxxx y1)13 (322,
代入初始条件得 4 C , 41) (3 xx x f
3.解:由题意: 10000010002 . 0 200xyx y, C x x dx x y21 . 0 200 ) 2 . 0 200 (
代入初始条件得 0 C , 所求的函数关系是2200 x x y
4.解:由题意:2 1600000RtRRtRkRdtdR,分离变量:
kdtRdR
两边积分:
kdtRdR
C kt R ln ln ktCe R ,
代入初始条件00RtR 得:0R C ,这时:kte R R0,
代入初始条件2 16000RtR 得:ke RR1600002 211600 ke
2 ln 1600 k
16002 ln k ,代入kte R R0得 te R R16002 ln0,化简得:16000 2tR R,
所以镭的量 R 与时间 t 的函数关系为16000 2tR R
高等数学(B B )(1 1 )综合练习
一、名词解释 1.函数——设 x 与 y 是两个变量,若当 x 在可以取值的范围 D 内任意取一个数值时,变量 y 通过某一法则 f,总有唯一确定的值与之对应,则称变量 y 是变量 x 的函数。其中 D 叫做函数的定义域,f 称为对应法则,集合G={y|y=f(x),x D }叫做函数的值域。
2. 奇函数——若函数 ) (x f y 的定义域关于原点对称,若对于任意的 x ,恒有 ,则称函数 ) ( ) ( x f x f ) (x f y 为奇函数。
3.连续——设函数 ) (x f y 在0x x 及其一个邻域内有定义,且等式) ( ) ( lim00x f x fx x成立,则称函数 ) (x f y 在0x x 连续。
) (x f y 在(a,b)内连续是指函数 ) (x f y 在(a,b)内的每个点处均连续。
4.定积分——设函数 上连续, , 在区间 ] [ ) ( b a x f y 在区间 ] [ b a, 内插入1 n 个分点:
b x x x x x an n 1 2 1 0 ,把区间 ] [ b a, 分成 n 个小区间] [1 i ix x, ,其长度为i i ix x x 1,其中 i 0,1,2,3,„, 1 - n ,在每个小区间 ] [1 i ix x, 上任取一点i :1 i i ix x ,并作乘积i ix f ) ( ,再求出部分和 10) (nii i nx f S ,令 } { max1 0in ix ,若 S S n 0lim( S 为常数),则称 S 为函数上 , 在区间 ] [ ) ( b a x f y 的定积分,记作 banii ix f dx x f100) ( lim ) ( 5.微分方程——含有未知函数的导数或微分的方程。
二、填空题 1.函数xy 3 的反函数是( x y3log ); 2.若函数 )
, 在( b a x f ) ( 内可导且单调增加,则 ) ( b a x , ,有 0 ) )( ( xf ; 3. ) ( )11 ( lim4 4exxx ; 4.若 x dx x f sin ) ) ( ( ,则 ) (sin ) ( x x f ; 5.若函数 12 x c bx ax y 在点 的一阶导数为零,则在该点取得极值且为 (a+b+c); 三、判断题 1.若 f(x)在(a,b)内严格单调,则 f(x)在(a,b)内存在反函数;(
)
2.若 f(x)与 g(x)在 ) ( , 都是偶函数,则 f(x)g(x)在实数范围内也是偶函
数。(
)
3.若数列 } {na 单调增加,则数列 } {na 存在极限;(
)
4.若函数 f(x)在点 a 可导,则函数 f(x)在点 a 连续;(
) 5.函数 f(x)在(a,b)内的极大值必定大于它在该区间内的极小值。(
) 四、单选题 1.函数 )
, ( )
, 在( 0 01) ( xx x f 内( D )。
A.没有极大值点;
B. 没有极小值点; C.既没有极大值点也没有极小值点
D . 既有极大值点也有极小值点 2.设函数 ) (x f 连续,则dx x fdxd) ( 等于( A )
A. ) (x f ; B. dx x f ) ( ;
C. C x f ) ( ; D. dxx df ) (. 3.下列函数中,( C )为复合函数。
A.xy1 ; B. xy 3 ;
C. x y ln 1 ; D. x y2log . 4.设函数 ) (x f 在点0x 处可导,则hx f h x fh) ( ) (lim0 00 ( B )。
A.与0x ,h 都有关;
B. 仅与0x 有关,而与 h 无关; C.仅与 h 有关,而与0x 无关;
D. 与0x ,h 都无关。
5.若在区间[a,b]上 f(x)>0,在(a,b)内 0 ) ( xf ,根据定积分的几何意义,则 badx x f ) ( ( A )。
A.大于 ) )( ( a b b f ; B. 小于 ) )( ( a b b f ;
C.等于 ) )( ( a b b f ; D. 大于 ) )( ( a b a f . 五、计算题 1.求函数231) (xxx f 的定义域。
解:由题意知 0 32 x 3 3 x , 函数的定义域为 ) 3 3 ( , . 2.用导数定义求函数 2 ) (2 x x x f 在点 1 x 的导数。
解:
xx xxf x fx x2 2 ) 1 ( ) 1 (lim) 1 ( ) 1 (lim20 0xx xx 20lim
1 ) 1 ( lim0 xx
3.求1 . 0e 的近似值。
解:令xe y ,取 00 x , 1 . 0 x , 则由近似公式:
x x f x f x x f ) ( ) ( ) (0 0 0, 1 . 1 1 . 00 0 1 . 0 e e e
4.设函数 1 7 ) (3 5 x x x f ,求其原函数。
解:
C x x x dx x x 4 6 3 54761) 1 7 (
所以原函数为:
y C x x x 4 64761 5.求不定积分 dx x a2 2
解:令 t a x sin ,则 t a x a cos2 2 , tdt a dx cos ,
dt t a tdt a dx x a ) 2 cos2121( cos2 2 2 2 2 C t tataC tta cos sin2 2) 2 sin412(2 22
Cax aax aax a 2 2 2 22a r c s i n2
Cx a xax a 2a r c s i n22 2 2
如下图。
六、论述题 试简要论述微积分产生的历史背景。
答:见书 P205。
第一部分 交际英语
1.--Have a cup of tea, ________ ?
你需要来杯茶吗? --Thanks a lot. 非常感谢。
A don’t you
B haven’t you
C shall me
D will you
2.-- ________?
他怎么样? --He is not very well. 他不是很好。
A Who is he
B What is he
C How is he
D Who he is
3.—Why didn’t you come to my birthday party yesterday? 昨天为什么不来参加我的生日晚会?
-- ________.不好意思,我太太出了个交通事故 A Excuse me, my friend sent me a flower B Fine, I never go to birthday parties C Well, I don’t like birthday parties
D Sorry, but my wife had a car accident 4.—This box is too heavy for me to carry upstairs.这个盒子对我来说太重了,搬不到楼上去
--________ .让我帮你吧 A You may ask for help
B I’ll give you a hand C Please do me a favor
D I’d come to help 5. -Could I ask you a rather personal question? 我可以问您一个私人问题吗? -Of course, _________. 当然可以,开始 A good idea
B that’s right
C never mind
D go ahead Key: DCDBD
6.—Oh, dear! I’ve just broken a window. 噢天啊,我刚刚打破了一扇窗户。
-- ________.不用担心的。
A Great
B Don’t worry
C That’s fine
D Not at all 7. —Sorry. I have taken your sports shoes by mistake.抱歉,我拿错了你的运动鞋。
-- ________.没关系 A That’s right
B You’re welcome
C It doesn’t matter
D All right 8. -That’s a beautiful dress you have on!你穿的这件裙子很漂亮!
- ________.噢,谢谢,我昨天买的 A Oh, thanks. I got it yesterday B Sorry, it’s too cheap
C You can have it D See you later 9. -How do I get to the cinema?能告诉我电影院怎么走吗? - ________.沿着这条街,然后向左拐 A It’s very far.
B Yes, there is a cinema near here. C It’s well known.
D Go down this street and turn left. 10. -If you like I can mail this letter for you?您会喜欢我写封信给你吗? - ________ .那你真是太好了。
A That’s very kind of you
B You are so kind
C Please give me a hand
D You are great Key: BCADA
11. -David injured his leg playing football yesterday.大卫昨天踢球时腿受伤了
-Really? ________?真的吗?那怎么发生的啊? A Who did that
B What’s wrong with him C How did that happen
D Why was he so careless 12.-Must I be home before seven?我必须在 7 点之前回来吗? - _____
___.不,不需要 A No, you needn’t
B No, you mustn’t
C Yes, you will D No, you won’t 13.
-Shall I drive you to the railway station?要我开车送你去火车站吗? -Oh, don’t bother about it. I’ll take a taxi.哦。不要麻烦,我打个出租。
-Well, ________!恩,祝你旅途愉快。
-Thank you and good-bye! 谢谢,拜拜。
A come on
B help
C have it checked up
D have a nice trip 14. -I’m terribly sorry that I’ve spilled some coffee on the carpet.很抱歉,我溅了些咖啡在地毯上。
-________ .没关系 A. Sorry
B. It doesn’t matter
C. That’s right
D. Don’t mention it 15.
-Hi, is Mary there, please?请问,Mary 在吗? - ________别挂断,我去叫她 A Hold on. I’ll get her.
B No, she isn’t here. C Yes, she lives here.
D Yes, what do you want? Key: CADBA
16. -It’s rather cold in here. Do you mind if I close the window?这里相当冷,你介意我把窗关上吗? - ________.不介意,去关上吧。
A Yes, please
B No, go ahead C Sure, please
D I don’t like it 17.-Which sweater do you like better?你喜欢哪件毛衣?
- ________.我无法决定 A Good idea
B Yes, it’s nice
C Yes, please
D I can’t decide 18.-How clever your little son is!你的小儿子真聪明!
- ________.谢谢。
A I don’t think so
B In fact he isn’t
C Thank you
D You are not true
19.-Medam,do all the buses go downtown?女士,请问,是不是所有的公交车都开往市区?
- ________.
对不起,我也不是本地人 A Wow, you got the idea
B No, never mind
C pretty well, I guess
D Sorry, I’m new here 20.-Could I speak to Don Watkins, please?我能和 Don Watkins 说话吗?
- ________
我就是。
A I’m listening.
B Oh, how are you?
C Speaking ,please.
D I’m Don. Key: BDCDC
21.-Tomorrow is my birthday.明天是我的生日。
- ________ 祝你生日快乐。
A Oh, I have no idea
B I’m glad you like it. C Many happy returns of the day!
D You must be very happy. 22.-Did you win the 100 metre race? 你赢了百米比赛吗? -Yes, I did. 是的。
-Really?真的? - ________.是呀。
A Congratulations
B Best wishes
C Good luck
D Right 23.-You speak English very good.你的英语说的非常好。
- ________.谢谢。
A No, not at all
B My English is not good C Thank you
D No, you speak better than I 24.-I was worried about my maths, but Mr. Brown gave me an A.
我很担心我的数学,但是布朗先生给了我一个 A。
- ________祝贺你!真不容易。
A Don’t worry about it.
B Congratulations! That’s a difficult course. C Mr. Brown is very good. D Good luck to you! 25.-Thanks for your help.谢谢您的帮助
- ________.这是我的荣幸。
A My pleasure
B Never mind
C Quite right
D Don’t thank me Key: CDCBA
26.-Hello, I’m Harry Potter. 你好,我是 Harry Potter. -Hello, my name is Charles Green, but ________. 你好,我的名字叫 Charles Green,但是请叫我 Charles。
A call my Charles
B call me at Charles
C call me Charles
D call Charles me 27.—I’m sorry to trouble you. Can I borrow a pen, please?很抱歉打搅您,我能借用下您的笔吗? -- ________.当然!在这儿
A Yes, you can
B Certainly! It is here
C She’s welcome
D Thank you 28. -I was born in Boston, but I studied in New York. ________?我出生在波士顿,但在纽约上学,你呢 -I was born in New York, but studied in Boston.我出生在纽约,在波士顿上学。
A What do you do
B And you
C Where were you
D Do you 29.-Excuse me, could you show me the way to the nearest post office?打扰下,你能告诉我最近的邮局怎么走吗? - ________Oh yes! Two blocks away from here at the Green Avenue. You can’t miss it.噢,对!从这里过两个街区,在格林大街,你不会错过 A I beg your pardon? B What do you mean?
C You’re welcome.
D Mm, let me think. 30、-When are you going to the show?你打算什么时候去看这场演出? -__________.今天晚上。
A. Last night.
B.I am
C. Yesterday.
D. This evening. Key: CBBDD
31、--We need some toothpaste.我们需要一些牙膏。
--
让我们去买一些。
A. Let’s go to the bookstore.
B. Let’s get some.
C. Let’s buy them.
D. Let’s go. 32、--I’m sorry to trouble you.我很抱歉麻烦您。
--
.没关系。
A. The same to you
B What a pity! I’m sorry to hear that
C It doesn’t matter
D Thanks a lot 33 、--Unbelievable! I have failed the driving test again!难以置信!我的驾照考试又没通过!
--
. This is not the end of the world. 振作点。这不是世界末日。
A. Good luck B Cheer up
C Go ahead
D No problem 34、--Excuse me, but can you tell me the way to the post office?打搅下,你能告诉我去邮局的路吗
--
.不好意思,我是外地人。
A. Don’t ask that
B Sorry, I’m a stranger here C No, I can"t say that
D No, you’re driving too fast 35 、--Could you help me with my physics, please?请问你能帮我做物理课作业吗?
--
.很抱歉不行。我马上要去开会。
A. No, no way
B No, I couldn’t C No, I can’t
D Sorry I can’t. I have to go to a meeting right now Key: BCBBD
36.--Now let’s move on to another topic. Can you follow me?现在我们换个话题,你能跟的上吗? --
. Professor.是的,完全可以。教授。
A. No, I am not B Yes, I will
C No, I haven’t
D Yes, perfectly 37.--Can I have a look at your letter, please?可以让我看下你的信吗?
--
. 恐怕您不能看。
A. Excuse me, you can’t
B I’m afraid you can’t C I can’t agree with you
D Yes, thank you 38.—Haven’t seen you for ages! What are you busy doing now?好几年不见了,最近都在忙什么呢? --
.我现在在一家书店兼职。
A. I have the weather here B My hair is getting a bit longer C Yeah, thanks for coming
D I am working part time in a bookshop, you know 39.—How do you do? Glad to meet you.你好,很高兴认识你。
--
.你好,我也很高兴认识你。
A. Fine. How are you?
B How do you do? Glad to meet you, too. C How are you? Thank you!
D Nice. How are you? 40.—Susan is absent from today’s writing class.苏珊今天缺课了。
--
? As far as I know, she has never missed a class.怎么会?据我所知,她从来不缺课。
A. How come B So what
C Why
D What for Key: DBDBA
41.--I think he is a good lecturer.我认为他是一个好老师。
--
我也这样认为。
A Sorry, it doesn’t matter.
B So do I. C Yes. It’s a good idea. D I don’t mind. 42.—What do you think of the song?你觉得这首歌怎么样。
--
.听起来蛮悦耳的。
A It sounds sweet
B I like music very much C I don’t know the title
D It was a pleasure 43.—Who’s that speaking?/ Who’s speaking?你是谁?
--This is Tom
.我是 TOM A speaks
B spoken
C speaking
D saying 44.—How are you feeling?你感觉怎么样?
--Much better.
.好多了,谢谢你来看望我。
A Thanks for coming to see me B You look great
C You are so kind
D Don’t mention it 45.—How are you, Bob?你好吗,鲍勃?
--
, Ted.我很好,谢谢,泰德。
A How are you?
B I’m fine. Thank you.C How do you do? D Nice to meet you. Key: BACAB 46、 -How is your mother these days?你的母亲最近几天怎么样? -Oh____________哦,她不是非常好。
A. She is good.
B. She is not very well.
C. Never mind.
D. That’s all right. 47、 -Let’s go to a movie after work, OK?我们下班以后去看电影怎么样?
-__________.为什么不呢 A. Not at all.
B. Why not?
C. Never mind.
D. Who is it? 48 、-Paul,________?鲍,那边在说话的人是谁? -Oh, that’s my father! And beside him, my mother.哦,那是我的爸爸,在他旁边的是我妈妈。
A. what is the person over there.
B. who’s talking over there. C. what are they doing.
D. which is that. 49 、-How often do you go dancing?你多久去跳一次舞?
-_______.
每隔一天去一次。
A.I will go dancing tomorrow.
B. Yesterday. C. Every other day.
D. I’ve been dancing for a year. 50 、-Hello, may I talk to the director now?你好,我现在可以和导演谈谈吗?
-__________.很抱歉,他现在很忙。
A. Sorry, he is busy at the moment.
B. No, you can’t. C. Sorry, you can’t.
D.I don’t know. Key: BBBCA
51、--Why not join ...
相关热词搜索: 电大 学年 秋季热门文章:
- 2024年学习廉洁《警示案例教...2023-12-26
- 2024XX县委书记在重阳节离退...2023-12-26
- 2024年XX政协主席在区委主题...2023-12-26
- 2024支部书记关于人居环境整...2023-12-25
- 2024党组织规范化建设工作实...2023-12-25
- 全民国家安全教育日心得感悟...2023-12-07
- 实体店双十一活动方案6篇2023-12-06
- 甄选企业出纳个人工作总结多...2023-12-06
- “中秋节”主题创意活动方案8篇2023-12-06
- 全县组织工作会议交流材料3篇2023-12-06
相关文章:
- 年国家开放大学电大《中国法...2021-08-27
- 年国家开放大学电大《专业技...2021-08-27
- 国家开放大学电大《思想道德...2021-08-27
- 年国家开放大学电大《信息检...2021-08-27
- 年国家开放大学电大《演讲与...2021-08-27
- 年国家开放大学电大《乡村旅...2021-08-27
- 年国家开放大学电大《政府公...2021-08-27
- 年国家开放大学电大《中国特...2021-08-27
- 年国家开放大学电大《中国政...2021-08-27
- 年国家开放大学电大《中财务...2021-08-27
- 学年总结鉴定表自我总结2021-08-24
- 第一学年自我鉴定范文_学年自...2021-08-24
- 高三年级生物教学工作计划,(...2021-08-27
- 警察学院学年第一学期2-19周...2021-08-27
- -2021学年度小学六年级信息技...2021-08-27
- 2020—学年下学期教研处工作...2021-08-27
- 学年第二学期小学信息化工作计划2021-08-27
- —2021学年度第二学期英语教...2021-08-27
- 20xx学年度第二学期度假区小...2021-08-28
- 小学20xx学年度教学工作总结2021-08-28
- 校长2020年秋季开学升旗仪式...2021-08-27
- 秋季小学学校安全计划2021-08-27
- 秋季升旗仪式主持词2021-08-27
- 在市委党校秋季青干班学习的...2021-09-21
- 2020年秋季幼儿园开学第一课...2021-10-09
- 小学2020年秋季学期开学工作汇报2021-10-09
- 秋季著名中学自主招生方案2021-10-10
- 开展秋季阳光体育活动总结2021-10-10
- 新学期高中秋季开学典礼方案2篇2021-10-22
- 2009年秋季动物防疫员培训计划2022-01-20